Source code for estimagic.estimation.estimate_msm

"""Do a method of simlated moments estimation."""

import functools
import warnings
from collections.abc import Callable
from dataclasses import dataclass, field
from functools import cached_property
from typing import Any, Dict, Union

import numpy as np
import pandas as pd
from pybaum import leaf_names, tree_just_flatten

from estimagic.differentiation.derivatives import first_derivative
from estimagic.estimation.msm_weighting import get_weighting_matrix
from estimagic.exceptions import InvalidFunctionError
from estimagic.inference.msm_covs import cov_optimal, cov_robust
from estimagic.inference.shared import (
    FreeParams,
    calculate_ci,
    calculate_estimation_summary,
    calculate_free_estimates,
    calculate_p_values,
    calculate_summary_data_estimation,
    get_derivative_case,
    transform_covariance,
    transform_free_cov_to_cov,
    transform_free_values_to_params_tree,
)
from estimagic.optimization.optimize_result import OptimizeResult
from estimagic.optimization.optimize import minimize
from estimagic.parameters.block_trees import block_tree_to_matrix, matrix_to_block_tree
from estimagic.parameters.conversion import Converter, get_converter
from estimagic.parameters.space_conversion import InternalParams
from estimagic.parameters.tree_registry import get_registry
from estimagic.sensitivity.msm_sensitivity import (
    calculate_actual_sensitivity_to_noise,
    calculate_actual_sensitivity_to_removal,
    calculate_fundamental_sensitivity_to_noise,
    calculate_fundamental_sensitivity_to_removal,
    calculate_sensitivity_to_bias,
    calculate_sensitivity_to_weighting,
)
from estimagic.shared.check_option_dicts import (
    check_numdiff_options,
    check_optimization_options,
)
from estimagic.utilities import get_rng, to_pickle


[docs]def estimate_msm( simulate_moments, empirical_moments, moments_cov, params, optimize_options, *, lower_bounds=None, upper_bounds=None, constraints=None, logging=False, log_options=None, simulate_moments_kwargs=None, weights="diagonal", numdiff_options=None, jacobian=None, jacobian_kwargs=None, ): """Do a method of simulated moments or indirect inference estimation. This is a high level interface for our lower level functions for minimization, numerical differentiation, inference and sensitivity analysis. It does the full workflow for MSM or indirect inference estimation with just one function call. While we have good defaults, you can still configure each aspect of each steps vial the optional arguments of this functions. If you find it easier to do the minimization separately, you can do so and just provide the optimal parameters as ``params`` and set ``optimize_options=False``. Args: simulate_moments (callable): Function that takes params and potentially other keyword arguments and returns a pytree with simulated moments. If the function returns a dict containing the key ``"simulated_moments"`` we only use the value corresponding to that key. Other entries are stored in the log database if you use logging. empirical_moments (pandas.Series): A pytree with the same structure as the result of ``simulate_moments``. moments_cov (pandas.DataFrame): A block-pytree containing the covariance matrix of the empirical moments. This is typically calculated with our ``get_moments_cov`` function. params (pytree): A pytree containing the estimated or start parameters of the model. If the supplied parameters are estimated parameters, set optimize_options to False. Pytrees can be a numpy array, a pandas Series, a DataFrame with "value" column, a float and any kind of (nested) dictionary or list containing these elements. See :ref:`params` for examples. optimize_options (dict, str or False): Keyword arguments that govern the numerical optimization. Valid entries are all arguments of :func:`~estimagic.optimization.optimize.minimize` except for those that can be passed explicitly to ``estimate_msm``. If you pass False as ``optimize_options`` you signal that ``params`` are already the optimal parameters and no numerical optimization is needed. If you pass a str as optimize_options it is used as the ``algorithm`` option. lower_bounds (pytree): A pytree with the same structure as params with lower bounds for the parameters. Can be ``-np.inf`` for parameters with no lower bound. upper_bounds (pytree): As lower_bounds. Can be ``np.inf`` for parameters with no upper bound. simulate_moments_kwargs (dict): Additional keyword arguments for ``simulate_moments``. weights (str): One of "diagonal" (default), "identity" or "optimal". Note that "optimal" refers to the asymptotically optimal weighting matrix and is often not a good choice due to large finite sample bias. constraints (list, dict): List with constraint dictionaries or single dict. See :ref:`constraints`. logging (pathlib.Path, str or False): Path to sqlite3 file (which typically has the file extension ``.db``. If the file does not exist, it will be created. The dashboard can only be used when logging is used. log_options (dict): Additional keyword arguments to configure the logging. - "fast_logging" (bool): A boolean that determines if "unsafe" settings are used to speed up write processes to the database. This should only be used for very short running criterion functions where the main purpose of the log is a real-time dashboard and it would not be catastrophic to get a corrupted database in case of a sudden system shutdown. If one evaluation of the criterion function (and gradient if applicable) takes more than 100 ms, the logging overhead is negligible. - "if_table_exists" (str): One of "extend", "replace", "raise". What to do if the tables we want to write to already exist. Default "extend". - "if_database_exists" (str): One of "extend", "replace", "raise". What to do if the database we want to write to already exists. Default "extend". numdiff_options (dict): Keyword arguments for the calculation of numerical derivatives for the calculation of standard errors. See :ref:`first_derivative` for details. Note that by default we increase the step_size by a factor of 2 compared to the rule of thumb for optimal step sizes. This is because many msm criterion functions are slightly noisy. jacobian (callable): A function that take ``params`` and potentially other keyword arguments and returns the jacobian of simulate_moments with respect to the params. jacobian_kwargs (dict): Additional keyword arguments for the jacobian function. Returns: dict: The estimated parameters, standard errors and sensitivity measures and covariance matrix of the parameters. """ # ================================================================================== # Check and process inputs # ================================================================================== if weights not in ["diagonal", "optimal", "identity"]: raise NotImplementedError("Custom weighting matrices are not yet implemented.") is_optimized = optimize_options is False if not is_optimized: if isinstance(optimize_options, str): optimize_options = {"algorithm": optimize_options} check_optimization_options( optimize_options, usage="estimate_msm", algorithm_mandatory=True, ) jac_case = get_derivative_case(jacobian) check_numdiff_options(numdiff_options, "estimate_msm") numdiff_options = {} if numdiff_options in (None, False) else numdiff_options.copy() if "scaling_factor" not in numdiff_options: numdiff_options["scaling_factor"] = 2 weights, internal_weights = get_weighting_matrix( moments_cov=moments_cov, method=weights, empirical_moments=empirical_moments, return_type="pytree_and_array", ) internal_moments_cov = block_tree_to_matrix( moments_cov, outer_tree=empirical_moments, inner_tree=empirical_moments, ) constraints = [] if constraints is None else constraints jacobian_kwargs = {} if jacobian_kwargs is None else jacobian_kwargs simulate_moments_kwargs = ( {} if simulate_moments_kwargs is None else simulate_moments_kwargs ) # ================================================================================== # Calculate estimates via minimization (if necessary) # ================================================================================== if is_optimized: estimates = params opt_res = None else: funcs = get_msm_optimization_functions( simulate_moments=simulate_moments, empirical_moments=empirical_moments, weights=weights, simulate_moments_kwargs=simulate_moments_kwargs, # Always pass None because we do not support closed form jacobians during # optimization yet. Otherwise we would get a NotImplementedError jacobian=None, jacobian_kwargs=jacobian_kwargs, ) opt_res = minimize( lower_bounds=lower_bounds, upper_bounds=upper_bounds, constraints=constraints, logging=logging, log_options=log_options, params=params, **funcs, # contains the criterion func and possibly more **optimize_options, ) estimates = opt_res.params # ================================================================================== # do first function evaluations # ================================================================================== try: sim_mom_eval = simulate_moments(estimates, **simulate_moments_kwargs) except (KeyboardInterrupt, SystemExit): raise except Exception as e: msg = "Error while evaluating simulate_moments at estimated params." raise InvalidFunctionError(msg) from e if callable(jacobian): try: jacobian_eval = jacobian(estimates, **jacobian_kwargs) except (KeyboardInterrupt, SystemExit): raise except Exception as e: msg = "Error while evaluating derivative at estimated params." raise InvalidFunctionError(msg) from e else: jacobian_eval = None # ================================================================================== # get converter for params and function outputs # ================================================================================== def helper(params): raw = simulate_moments(params, **simulate_moments_kwargs) if isinstance(raw, dict) and "simulated_moments" in raw: out = {"contributions": raw["simulated_moments"]} else: out = {"contributions": raw} return out if isinstance(sim_mom_eval, dict) and "simulated_moments" in sim_mom_eval: func_eval = {"contributions": sim_mom_eval["simulated_moments"]} else: func_eval = {"contributions": sim_mom_eval} converter, internal_estimates = get_converter( params=estimates, constraints=constraints, lower_bounds=lower_bounds, upper_bounds=upper_bounds, func_eval=func_eval, primary_key="contributions", scaling=False, scaling_options=None, derivative_eval=jacobian_eval, ) # ================================================================================== # Calculate internal jacobian # ================================================================================== if jac_case == "closed-form": x = converter.params_to_internal(estimates) int_jac = converter.derivative_to_internal(jacobian_eval, x) else: def func(x): p = converter.params_from_internal(x) sim_mom_eval = helper(p) out = converter.func_to_internal(sim_mom_eval) return out int_jac = first_derivative( func=func, params=internal_estimates.values, lower_bounds=internal_estimates.lower_bounds, upper_bounds=internal_estimates.upper_bounds, **numdiff_options, )["derivative"] # ================================================================================== # Calculate external jac (if no constraints and not closed form ) # ================================================================================== if constraints in [None, []] and jacobian_eval is None and int_jac is not None: jacobian_eval = matrix_to_block_tree( int_jac, outer_tree=empirical_moments, inner_tree=estimates, ) if jacobian_eval is None: _no_jac_reason = ( "no closed form jacobian was provided and there are constraints" ) else: _no_jac_reason = None # ================================================================================== # Create MomentsResult # ================================================================================== free_estimates = calculate_free_estimates(estimates, internal_estimates) res = MomentsResult( _params=estimates, _weights=weights, _converter=converter, _optimize_result=opt_res, _internal_weights=internal_weights, _internal_moments_cov=internal_moments_cov, _internal_jacobian=int_jac, _jacobian=jacobian_eval, _no_jacobian_reason=_no_jac_reason, _empirical_moments=empirical_moments, _internal_estimates=internal_estimates, _free_estimates=free_estimates, _has_constraints=constraints not in [None, []], ) return res
def get_msm_optimization_functions( simulate_moments, empirical_moments, weights, *, simulate_moments_kwargs=None, jacobian=None, jacobian_kwargs=None, ): """Construct criterion functions and their derivatives for msm estimation. Args: simulate_moments (callable): Function that takes params and potentially other keyworrd arguments and returns simulated moments as a pandas Series. Alternatively, the function can return a dict with any number of entries as long as one of those entries is "simulated_moments". empirical_moments (pandas.Series): A pandas series with the empirical equivalents of the simulated moments. weights (pytree): The weighting matrix as block pytree. simulate_moments_kwargs (dict): Additional keyword arguments for ``simulate_moments``. jacobian (callable or pandas.DataFrame): A function that take ``params`` and potentially other keyword arguments and returns the jacobian of simulate_moments with respect to the params. Alternatively you can pass a pandas.DataFrame with the jacobian at the optimal parameters. This is only possible if you pass ``optimize_options=False``. jacobian_kwargs (dict): Additional keyword arguments for jacobian. Returns: dict: Dictionary containing at least the entry "criterion". If enough inputs are provided it also contains the entries "derivative" and "criterion_and_derivative". All values are functions that take params as only argument. """ flat_weights = block_tree_to_matrix( weights, outer_tree=empirical_moments, inner_tree=empirical_moments, ) chol_weights = np.linalg.cholesky(flat_weights) registry = get_registry(extended=True) flat_emp_mom = tree_just_flatten(empirical_moments, registry=registry) _simulate_moments = _partial_kwargs(simulate_moments, simulate_moments_kwargs) _jacobian = _partial_kwargs(jacobian, jacobian_kwargs) criterion = functools.partial( _msm_criterion, simulate_moments=_simulate_moments, flat_empirical_moments=flat_emp_mom, chol_weights=chol_weights, registry=registry, ) out = {"criterion": criterion} if _jacobian is not None: raise NotImplementedError( "Closed form jacobians are not yet supported in estimate_msm" ) return out def _msm_criterion( params, simulate_moments, flat_empirical_moments, chol_weights, registry ): """Calculate msm criterion given parameters and building blocks.""" simulated = simulate_moments(params) if isinstance(simulated, dict) and "simulated_moments" in simulated: simulated = simulated["simulated_moments"] if isinstance(simulated, np.ndarray) and simulated.ndim == 1: simulated_flat = simulated else: simulated_flat = np.array(tree_just_flatten(simulated, registry=registry)) deviations = simulated_flat - flat_empirical_moments root_contribs = deviations @ chol_weights value = root_contribs @ root_contribs out = { "value": value, "root_contributions": root_contribs, } return out def _partial_kwargs(func, kwargs): """Partial keyword arguments into a function. In contrast to normal partial this works if kwargs in None. If func is not a callable it simply returns None. """ if isinstance(func, Callable): if kwargs not in (None, {}): out = functools.partial(func, **kwargs) else: out = func else: out = None return out
[docs]@dataclass class MomentsResult: """Method of moments estimation results object.""" _params: Any _internal_estimates: InternalParams _free_estimates: FreeParams _weights: Any _converter: Converter _internal_moments_cov: np.ndarray _internal_weights: np.ndarray _internal_jacobian: np.ndarray _empirical_moments: Any _has_constraints: bool _optimize_result: Union[OptimizeResult, None] = None _jacobian: Any = None _no_jacobian_reason: Union[str, None] = None _cache: Dict = field(default_factory=dict) def _get_free_cov(self, method, n_samples, bounds_handling, seed): if method not in {"optimal", "robust"}: msg = f"Invalid method {method}. method must be in {'optimal', 'robust'}" raise ValueError(msg) args = (method, n_samples, bounds_handling, seed) is_cached = args in self._cache if is_cached: free_cov = self._cache[args] else: free_cov = _calculate_free_cov_msm( internal_estimates=self._internal_estimates, internal_jacobian=self._internal_jacobian, internal_moments_cov=self._internal_moments_cov, internal_weights=self._internal_weights, converter=self._converter, method=method, n_samples=n_samples, bounds_handling=bounds_handling, seed=seed, ) if seed is not None: self._cache[args] = free_cov elif self._converter.has_transforming_constraints: msg = ( "seed is set to None and constraints are transforming. This leads " "to randomness in the result. To avoid random behavior, choose a " "non-None seed." ) warnings.warn(msg) return free_cov @property def params(self): return self._params @property def optimize_result(self): return self._optimize_result @property def weights(self): return self._weights @property def jacobian(self): return self._jacobian @cached_property def _se(self): return self.se() @cached_property def _cov(self): return self.cov() @cached_property def _summary(self): return self.summary() @cached_property def _ci(self): return self.ci() @cached_property def _p_values(self): return self.p_values()
[docs] def se( self, method="robust", n_samples=10_000, bounds_handling="clip", seed=None, ): """Calculate standard errors. Args: method (str): One of "robust", "optimal". Despite the name, "optimal" is not recommended in finite samples and "optimal" standard errors are only valid if the asymptotically optimal weighting matrix has been used. It is only supported because it is needed to calculate sensitivity measures. n_samples (int): Number of samples used to transform the covariance matrix of the internal parameter vector into the covariance matrix of the external parameters. For background information about internal and external params see :ref:`implementation_of_constraints`. This is only used if you are using constraints. bounds_handling (str): One of "clip", "raise", "ignore". Determines how bounds are handled. If "clip", confidence intervals are clipped at the bounds. Standard errors are only adjusted if a sampling step is necessary due to additional constraints. If "raise" and any lower or upper bound is binding, we raise an Error. If "ignore", boundary problems are simply ignored. seed (int): Seed for the random number generator. Only used if there are transforming constraints. Returns: Any: A pytree with the same structure as params containing standard errors for the parameter estimates. """ free_cov = self._get_free_cov( method=method, n_samples=n_samples, bounds_handling=bounds_handling, seed=seed, ) free_se = np.sqrt(np.diagonal(free_cov)) se = transform_free_values_to_params_tree( values=free_se, free_params=self._free_estimates, params=self._params, ) return se
[docs] def cov( self, method="robust", n_samples=10_000, bounds_handling="clip", return_type="pytree", seed=None, ): """Calculate the variance-covariance matrix of the estimated parameters. Args: method (str): One of "robust", "optimal". Despite the name, "optimal" is not recommended in finite samples and "optimal" standard errors are only valid if the asymptotically optimal weighting matrix has been used. It is only supported because it is needed to calculate sensitivity measures. n_samples (int): Number of samples used to transform the covariance matrix of the internal parameter vector into the covariance matrix of the external parameters. For background information about internal and external params see :ref:`implementation_of_constraints`. This is only used if you are using constraints. bounds_handling (str): One of "clip", "raise", "ignore". Determines how bounds are handled. If "clip", confidence intervals are clipped at the bounds. Standard errors are only adjusted if a sampling step is necessary due to additional constraints. If "raise" and any lower or upper bound is binding, we raise an Error. If "ignore", boundary problems are simply ignored. return_type (str): One of "pytree", "array" or "dataframe". Default pytree. If "array", a 2d numpy array with the covariance is returned. If "dataframe", a pandas DataFrame with parameter names in the index and columns are returned. seed (int): Seed for the random number generator. Only used if there are transforming constraints. Returns: Any: The covariance matrix of the estimated parameters as block-pytree or numpy array. """ free_cov = self._get_free_cov( method=method, n_samples=n_samples, bounds_handling=bounds_handling, seed=seed, ) cov = transform_free_cov_to_cov( free_cov=free_cov, free_params=self._free_estimates, params=self._params, return_type=return_type, ) return cov
[docs] def summary( self, method="robust", n_samples=10_000, ci_level=0.95, bounds_handling="clip", seed=None, ): """Create a summary of estimation results. Args: method (str): One of "robust", "optimal". Despite the name, "optimal" is not recommended in finite samples and "optimal" standard errors are only valid if the asymptotically optimal weighting matrix has been used. It is only supported because it is needed to calculate sensitivity measures. ci_level (float): Confidence level for the calculation of confidence intervals. The default is 0.95. n_samples (int): Number of samples used to transform the covariance matrix of the internal parameter vector into the covariance matrix of the external parameters. For background information about internal and external params see :ref:`implementation_of_constraints`. This is only used if you are using constraints. bounds_handling (str): One of "clip", "raise", "ignore". Determines how bounds are handled. If "clip", confidence intervals are clipped at the bounds. Standard errors are only adjusted if a sampling step is necessary due to additional constraints. If "raise" and any lower or upper bound is binding, we raise an Error. If "ignore", boundary problems are simply ignored. seed (int): Seed for the random number generator. Only used if there are transforming constraints. Returns: Any: The estimation summary as pytree of DataFrames. """ summary_data = calculate_summary_data_estimation( self, free_estimates=self._free_estimates, method=method, ci_level=ci_level, n_samples=n_samples, bounds_handling=bounds_handling, seed=seed, ) summary = calculate_estimation_summary( summary_data=summary_data, names=self._free_estimates.all_names, free_names=self._free_estimates.free_names, ) return summary
[docs] def ci( self, method="robust", n_samples=10_000, ci_level=0.95, bounds_handling="clip", seed=None, ): """Calculate confidence intervals. Args: method (str): One of "robust", "optimal". Despite the name, "optimal" is not recommended in finite samples and "optimal" standard errors are only valid if the asymptotically optimal weighting matrix has been used. It is only supported because it is needed to calculate sensitivity measures. ci_level (float): Confidence level for the calculation of confidence intervals. The default is 0.95. n_samples (int): Number of samples used to transform the covariance matrix of the internal parameter vector into the covariance matrix of the external parameters. For background information about internal and external params see :ref:`implementation_of_constraints`. This is only used if you are using constraints. bounds_handling (str): One of "clip", "raise", "ignore". Determines how bounds are handled. If "clip", confidence intervals are clipped at the bounds. Standard errors are only adjusted if a sampling step is necessary due to additional constraints. If "raise" and any lower or upper bound is binding, we raise an Error. If "ignore", boundary problems are simply ignored. seed (int): Seed for the random number generator. Only used if there are transforming constraints. Returns: Any: Pytree with the same structure as params containing lower bounds of confidence intervals. Any: Pytree with the same structure as params containing upper bounds of confidence intervals. """ free_cov = self._get_free_cov( method=method, n_samples=n_samples, bounds_handling=bounds_handling, seed=seed, ) free_lower, free_upper = calculate_ci( free_values=self._free_estimates.values, free_standard_errors=np.sqrt(np.diagonal(free_cov)), ci_level=ci_level, ) lower, upper = ( transform_free_values_to_params_tree( values, free_params=self._free_estimates, params=self._params ) for values in (free_lower, free_upper) ) return lower, upper
[docs] def p_values( self, method="robust", n_samples=10_000, bounds_handling="clip", seed=None, ): """Calculate p-values. Args: method (str): One of "robust", "optimal". Despite the name, "optimal" is not recommended in finite samples and "optimal" standard errors are only valid if the asymptotically optimal weighting matrix has been used. It is only supported because it is needed to calculate sensitivity measures. n_samples (int): Number of samples used to transform the covariance matrix of the internal parameter vector into the covariance matrix of the external parameters. For background information about internal and external params see :ref:`implementation_of_constraints`. This is only used if you are using constraints. bounds_handling (str): One of "clip", "raise", "ignore". Determines how bounds are handled. If "clip", confidence intervals are clipped at the bounds. Standard errors are only adjusted if a sampling step is necessary due to additional constraints. If "raise" and any lower or upper bound is binding, we raise an Error. If "ignore", boundary problems are simply ignored. seed (int): Seed for the random number generator. Only used if there are transforming constraints. Returns: Any: Pytree with the same structure as params containing p-values. Any: Pytree with the same structure as params containing p-values. """ free_cov = self._get_free_cov( method=method, n_samples=n_samples, bounds_handling=bounds_handling, seed=seed, ) free_p_values = calculate_p_values( free_values=self._free_estimates.values, free_standard_errors=np.sqrt(np.diagonal(free_cov)), ) p_values = transform_free_values_to_params_tree( free_p_values, free_params=self._free_estimates, params=self._params ) return p_values
[docs] def sensitivity( self, kind="bias", n_samples=10_000, bounds_handling="clip", seed=None, return_type="pytree", ): """Calculate sensitivity measures for moments estimates. The sensitivity measures are based on the following papers: Andrews, Gentzkow & Shapiro (2017, Quarterly Journal of Economics) Honore, Jorgensen & de Paula (https://onlinelibrary.wiley.com/doi/full/10.1002/jae.2779) In the papers the different kinds of sensitivity measures are just called m1, e2, e3, e4, e5 and e6. We try to give them more informative names, but list the original names for references. Args: kind (str): The following kinds are supported: - "bias": Origally m1. How strongly would the parameter estimates be biased if the kth moment was misspecified, i.e not zero in expectation? - "noise_fundamental": Originally e2. How much precision would be lost if the kth moment was subject to a little additional noise if the optimal weighting matrix was used? - "noise": Originally e3. How much precision would be lost if the kth moment was subjet to a little additional noise? - "removal": Originally e4. How much precision would be lost if the kth moment was excluded from the estimation? - "removal_fundamental": Originally e5. How much precision would be lost if the kth moment was excluded from the estimation if the asymptotically optimal weighting matrix was used. - "weighting": Originally e6. How would the precision change if the weight of the kth moment is increased a little? n_samples (int): Number of samples used to transform the covariance matrix of the internal parameter vector into the covariance matrix of the external parameters. For background information about internal and external params see :ref:`implementation_of_constraints`. This is only used if you are using constraints. bounds_handling (str): One of "clip", "raise", "ignore". Determines how bounds are handled. If "clip", confidence intervals are clipped at the bounds. Standard errors are only adjusted if a sampling step is necessary due to additional constraints. If "raise" and any lower or upper bound is binding, we raise an Error. If "ignore", boundary problems are simply ignored. seed (int): Seed for the random number generator. Only used if there are transforming constraints. return_type (str): One of "array", "dataframe" or "pytree". Default pytree. If your params or moments have a very nested format, return_type "dataframe" might be the better choice. Returns: Any: The sensitivity measure as a pytree, numpy array or DataFrame. In 2d formats, the sensitivity measures have one row per estimated parameter and one column per moment. """ if self._has_constraints: raise NotImplementedError( "Sensitivity measures with constraints are not yet implemented." ) jac = self._internal_jacobian weights = self._internal_weights moments_cov = self._internal_moments_cov params_cov = self._get_free_cov( method="robust", n_samples=n_samples, bounds_handling=bounds_handling, seed=seed, ) weights_opt = get_weighting_matrix( moments_cov=moments_cov, method="optimal", empirical_moments=self._empirical_moments, ) params_cov_opt = cov_optimal(jac, weights_opt) if kind == "bias": raw = calculate_sensitivity_to_bias(jac=jac, weights=weights) elif kind == "noise_fundamental": raw = calculate_fundamental_sensitivity_to_noise( jac=jac, weights=weights_opt, moments_cov=moments_cov, params_cov_opt=params_cov_opt, ) elif kind == "noise": m1 = calculate_sensitivity_to_bias(jac=jac, weights=weights) raw = calculate_actual_sensitivity_to_noise( sensitivity_to_bias=m1, weights=weights, moments_cov=moments_cov, params_cov=params_cov, ) elif kind == "removal": raw = calculate_actual_sensitivity_to_removal( jac=jac, weights=weights, moments_cov=moments_cov, params_cov=params_cov, ) elif kind == "removal_fundamental": raw = calculate_fundamental_sensitivity_to_removal( jac=jac, moments_cov=moments_cov, params_cov_opt=params_cov_opt, ) elif kind == "weighting": raw = calculate_sensitivity_to_weighting( jac=jac, weights=weights, moments_cov=moments_cov, params_cov=params_cov, ) else: raise ValueError(f"Invalid kind: {kind}") if return_type == "array": out = raw elif return_type == "pytree": out = matrix_to_block_tree( raw, outer_tree=self._params, inner_tree=self._empirical_moments, ) elif return_type == "dataframe": registry = get_registry(extended=True) row_names = self._internal_estimates.names col_names = leaf_names(self._empirical_moments, registry=registry) out = pd.DataFrame( data=raw, index=row_names, columns=col_names, ) else: msg = ( f"Invalid return type: {return_type}. Valid are 'pytree', 'array' " "and 'dataframe'" ) raise ValueError(msg) return out
[docs] def to_pickle(self, path): """Save the MomentsResult object to pickle. Args: path (str, pathlib.Path): A str or pathlib.path ending in .pkl or .pickle. """ to_pickle(self, path=path)
def _calculate_free_cov_msm( internal_estimates, internal_jacobian, internal_moments_cov, internal_weights, converter, method, n_samples, bounds_handling, seed, ): if method == "optimal": internal_cov = cov_optimal(internal_jacobian, internal_weights) else: internal_cov = cov_robust( internal_jacobian, internal_weights, internal_moments_cov ) rng = get_rng(seed) free_cov = transform_covariance( internal_params=internal_estimates, internal_cov=internal_cov, converter=converter, n_samples=n_samples, rng=rng, bounds_handling=bounds_handling, ) return free_cov